Memorandum for Record

July 27, 2023

Subject: Suitability Determination Memorandum for the Swinomish Commercial Fish Dock Maintenance Dredging, Swinomish Channel, Washington

Introduction

This suitability determination memorandum (SDM) documents the consensus regarding the suitability of the proposed dredged material for unconfined aquatic disposal as determined by the Dredged Material Management Program (DMMP) agencies (U.S. Army Corps of Engineers, Washington Departments of Ecology and Natural Resources, and the U.S. Environmental Protection Agency).

Project Description

The Swinomish Indian Tribal Community (SITC) proposes to dredge accumulated sediments at their commercial fishing docks near La Conner, Washington (Figure 1). Sedimentation has caused these areas to be unusable during low tides and have created unsafe, non-navigable conditions for vessels. These docks are essential for the tribe's fishing operations and allow the tribe to exercise their treaty rights.

The proposed plan is to dredge -8 ft MLLW plus 1 ft of overdepth for a design depth of -9 ft MLLW (Figure 2) with an estimated 7,800 cy to be removed. Dredged material will either be disposed at a DMMP managed open-water disposal site or at an upland location. If open-water disposal is chosen, the dredged material will be moved north through Swinomish Channel to the Rosario Strait disposal site. In the case that upland disposal is chosen, the dredged material will be transferred to a nearby location on the SITC reservation.

Project Summary

Waterbody	Swinomish Channel				
Water classification	Marine				
Project rank	Moderate				
Total proposed dredging volume	7,800 cy				
Max. proposed dredging depth	-8 MLLW + 1 ft over-dredge allowance (to -9 ft MLLW)				
Proposed disposal location(s)	Rosario Strait Disposal Site or unidentified upland				
Dredged Material Management Units	One DMMU: 3 core samples				
(DMMUs): No. of samples	One Divitio. 3 core samples				
DMMP tracking number	SWCFD-1-A-F-449				
EIM Study ID	SWCFD23				
USACE Regulatory Reference Number	pending				
Sampling and Analysis Plan (SAP) Approval	December 15, 2022				
Date	Determiner 13, 2022				
Sampling Date	January 2, 2023				
Testing Parameters	DMMP standard freshwater COCs; no dioxins/furans or				
resumg rarameters	TBT required, however these COCs are included				
Biological Testing	Not required				

Suitability Outcome	All material found suitable for in-water disposal at any DMMP disposal site			
Recency Expiration (Moderate = 5 years)	January 2028			

Sampling Design Considerations

No previous sediment sampling is known to have occurred at the site. The shoreline near the docks is steep and armored with riprap, some of which has rolled into the dredge area. There is also some marine debris visible at the site (Gravity 2022). There is a strong tidal exchange that affects the Swinomish Channel, which is adjacent to the project area.

As a marina with no known previous data, the site was ranked "moderate." DMMP guidelines for a 7,800-cy project in a moderate area require one dredged material management unit (DMMU) represented by at least two field samples. For this project, three core samples were proposed for compositing into one sample for analysis of DMMU 1, which included the entire dredge prism (Gravity 2022).

Sampling and Analysis Description

Sediment cores were collected by vibracore on January 2, 2023, from aboard the Gravity Marine Consulting sampling vessel R/V Tieton. Three cores were collected, though only one core (SW-3) penetrated into the Z-layer (Table 1 & Figure 2). Multiple unsuccessful attempts were made to achieve target penetration at coring stations SW-1 and SW-2; however, angular cobble observed in the bottom of core tubes appeared to underlie much of the dredge prism at approximately two feet below the mudline (Gravity 2023). Thus, at SW-1 only 23 inches of penetration was achieved for the target depth of 7.4 feet, and at SW-2 only 24 inches of penetration was achieved for the target depth of 10.6 feet. All target depths included a 2-foot Z-layer.

Dredge prism material recovered from the three core samples was composited into one sample for dredge prism analysis; material from the Z-layer at SW-3 was archived pending results from the analysis of the dredge prism material. Sample SW-COMP (DMMU 1) was submitted to Analytical Resources, LLC in Tukwila, WA for analysis of all DMMP marine chemicals of concern and most conventionals. Analyses for TBT and dioxins/furans were not required by the DMMP, but the SITC chose to include those analyses as well. Grain size testing was done by AmTest Laboratories in Kirkland, WA.

Data Validation

No outside data validation was performed. All analyses were performed within the recommended holding times. The ARI laboratory report documented only minor issues that did not affect data quality. All data were considered usable by the DMMP for use in this determination.

Analytical Testing Results

Table 3 summarizes the analytical results for the single DMMU composite sample (DMMU 1) alongside the DMMP marine guidelines. The material was primarily sand (89.1%). Total organic carbon (TOC) was relatively low at 0.36%.

No detected or non-detected exceedances of the marine screening levels (SLs) occurred. There were also no exceedances of DMMP screening levels for TBT or dioxins/furans.

Biological Results

No biological testing was required for this project.

DMMP Determinations

Suitability Determination

Chemical concentrations in the dredge prism composite sample were below the DMMP marine SLs as described above. The DMMP agencies have concluded that all material from the Swinomish Commercial Fish Dock DMMU 1 is suitable for in-water disposal at any DMMP disposal site, including the Rosario Strait dispersive site. Upland placement of material may be subject to other permitting authorities depending on the disposal site selected.

This suitability determination is valid through January 2028. Coordination with the DMMO and a new suitability determination will be required prior to dredging past that date, or if proposed dredging volumes exceed the 7,800-cy covered by this SDM.

Antidegradation Determination

The sediment to be exposed by dredging must either meet the State of Washington Sediment Management Standards (SMS) or the State's Antidegradation Standard (Ecology, 2013) as outlined by DMMP guidance (DMMP, 2008). Concentrations of all DMMP chemicals of concern were below the DMMP SLs, and there is no reason to believe that a new exposed surface would be contaminated relative to the overlying materials; therefore, analysis of the Z-sample was not required, and this project is in compliance with the State of Washington Antidegradation Standard.

Debris Management

The DMMP agencies require debris management to prevent the disposal of solid waste and debris at open-water disposal sites in Puget Sound (DMMP, 2015). Due to the visible debris at this location, and due to the lack of information regarding materials deeper in the prism than approximately 2 ft below mudline at sampling locations SW-1 and SW-2, debris screening using a 12" x 12" grid will be required prior to disposal at a DMMP open-water disposal site.

Notes and Clarifications

The decisions documented in this memorandum do **not** constitute final agency approval of the project. During the public comment period that follows a public notice, resource agencies will provide input on the overall project. A final decision will be made after full consideration of agency input, and after an alternatives analysis is done under section 404(b)(1) of the Clean Water Act.

A pre-dredge meeting with the WQC preparers, DNR and the Corps of Engineers is required at least 7 days prior to dredging. A dredging quality control plan must be developed and submitted to the USACE Seattle District's Regulatory Branch, to the tribal WQC preparer, to Ecology and to DNR. Refer to the USACE permit and tribe/Ecology 401 certifications for project-specific submittal requirements and timelines.

The DMMP does not make specific beneficial use determinations. However, these data are available for the assessment of project-specific beneficial use by the project proponent, permitting agencies, local health jurisdictions and/or the owner of a receiving property. Any use of these data for assessment of beneficial use should carefully consider core penetration depths and be aware that portions of this prism may include angular cobble per the Sampling and Analysis section discussion.

References

- DMMP 2021. *Dredged Material Evaluation and Disposal Procedures (User Manual)*. Dredged Material Management Program, July 2021.
- DMMP 2008. *Quality of Post-Dredge Surfaces (Updated)*. Prepared by David Fox (U.S. Army Corps of Engineers), Erika Hoffman (U.S. Environmental Protection Agency) and Tom Gries (Washington Department of Ecology) for the Dredged Material Management Program (DMMP) agencies. June 2008.
- Ecology 2013. *Sediment Management Standards Chapter 173-204 WAC*. Washington State Department of Ecology, February 2013.
- Gravity 2022. Sampling and Analysis Plan: Sediment Quality Study Swinomish Commercial Fish Dock Dredge Project, La Conner, Washington. Prepared for the Skagit River System Cooperative by Gravity Marine Consulting. December 2022.
- Gravity 2023. Sediment Sampling & Analysis Data Report: Swinomish Dock Dredging Project, La Conner, Washington. Prepared for the Skagit River System Cooperative by Gravity Marine Consulting. July 2023.

Agency Signatures

Signed document available from USACE Seattle District, Dredged Material Management Office

Date	Lauran Warner – U.S. Army Corps of Engineers, Seattle District
Date	Justine Barton – U.S. Environmental Protection Agency, Region 10
 Date	Laura Inouye, PhD. – Washington State Department of Ecology
 Date	Shannon Soto – Washington State Department of Natural Resources

Copies Furnished:

DMMP agencies Kristin Murray, USACE Regulatory Project Manager Shawn Hinz, Gravity Marine Consulting Eric Mickelson, Skagit River System Cooperative DMMO File

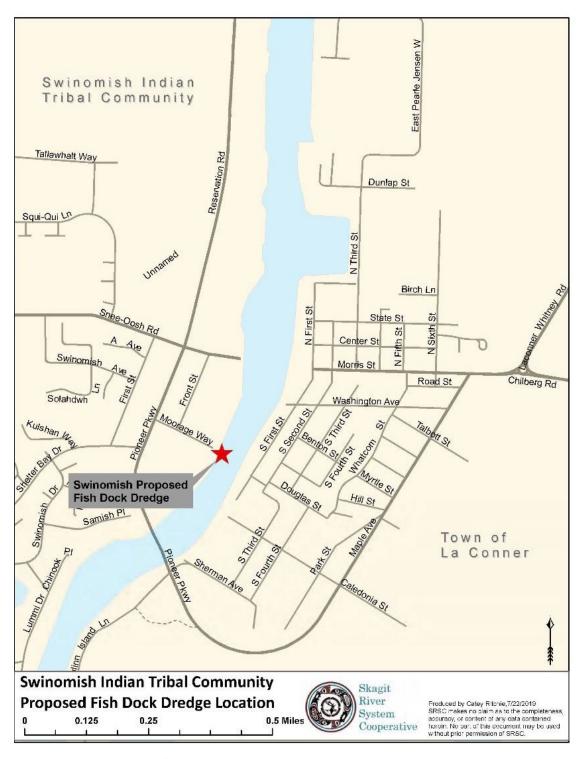


Figure 1. Vicinity Map of Swinomish Indian Tribal Community Fish Dock



Figure 2. Proposed dredge area and sampling locations. Adapted from Gravity 2023.

Table 1. Sampling summary. Adapted from Gravity 2023.

Name	Date/Time	Latitude	Longitude	Mudline Elevation (MLLW ft)	Target Penetration to Z-Layer (ft)	Actual Penetration (inches)	Recovery (inches)	Recovery (Percent)	Geological observations
SW-1	1/2/2023 9:45	48 23 26.00 N	122 29 57.47 W	-3.8	7.2	24	16.5	68.8%	Sands with some silt to 12" followed by shell hash with sand and angular cobble at bottom
SW-2	1/2/2023 10:50	48 23 24.62 N	122 29 58.14 W	-0.6	10.4	23	18	78.3%	Sands with some silt lenses and angular cobble at bottom
SW-3	1/2/2023 11:30	48 23 21.05 N	122 30 0.81 W	-5.9	5.1	60	56	93.3%	Sand to 12"; 12"-13" wood debris followed by sand with some silts to 56"; some large angular cobble at bottom of core

SEDIMENT SAMPLING AND ANALYSIS DATA REPORT SWINOMISH BOAT DOCK

Table 2. Analytical Results for Swinomish Commercial Fish Dock

	DMMU :	L	DMMP Guidelines			
	Result/RL	Q	SL	ВТ	ML	
CONVENTIONALS						
Gravel (%)	3.7					
Sand (%)	89.1					
Silt (%)	1.8					
Clay (%)	5.5					
Fines (silt + clay) (%)	7.3					
Ammonia as N (mg/kg dry wt)	0.48	U				
Sulfide (mg/kg dry wt)	251					
Total Organic Carbon (%)	0.36	D				
Total Solids (%)	79.06					
Total Volatile Solids (%)	1.14					
METALS (mg/kg dry weight)						
Antimony	0.24	U	150		200	
Arsenic	2.87		57	507.1	700	
Cadmium	0.07	J	5.1		14	
Chromium	20.2		260			
Copper	9.76		390		1,300	
Lead	2.54		450	975	1,200	
Mercury	0.0161	J	0.41	1.5	2.3	
Selenium	0.46	J		3		
Silver	0.24	U	6.1		8.4	
Zinc	30.6		410		3,800	
ORGANOMETALLICS (µg/kg dry weight)					,	
TBT ion (bulk)	11.6	U		73		
PAHs (μg/kg dry weight)					1	
Naphthalene	22.9		2,100		2,400	
Acenaphthylene	11	J	560		1,300	
Acenaphthene	20.0	U	500		2,000	
Fluorene	20.0	U	540		3,600	
Phenanthrene	97.9		1,500		21,000	
Anthracene	20.6		960		13,000	
2-Methylnaphthalene ⁽¹⁾	9.4	J	670		1,900	
Total LPAH	152.4	J	5,200		29,000	
Fluoranthene	151	·	1,700	4,600	30,000	
Pyrene	162		2,600	11,980	16,000	
Benzo(a)anthracene	59.6		1,300		5,100	
Chrysene	77.5		1,400		21,000	
Benzofluoranthenes (b, j ,k)	93.3		3,200		9,900	
Benzo(a)pyrene	44		1,600		3,600	
Indeno(1,2,3-c,d)pyrene	22		600		4,400	
Dibenz(a,h)anthracene	20.0	U	230		1,900	
Benzo(g,h,i)perylene	22.7		670		3,200	
Total HPAH	632.1		12,000		69,000	

SEDIMENT SAMPLING AND ANALYSIS DATA REPORT SWINOMISH BOAT DOCK

	DMMU :	L	DMMP Guidelines		
	Result/RL	Q	SL	ВТ	ML
CHLORINATED HYDROCARBONS (μg/kg dry weight)					
1,4-Dichlorobenzene (SIM)	1.6	J	110		120
1,2-Dichlorobenzene (SIM)	1.5	J	35		110
1,2,4-Trichlorobenzene (SIM)	5.0	U	31		64
Hexachlorobenzene (HCB) (SIM)	1.4	J	22	168	230
PHTHALATES (μg/kg dry weight)					
Dimethyl phthalate	21.2		71		1,400
Diethyl phthalate	50.0	U	200		1,200
Di-n-butyl phthalate	20.0	U	1,400		5,100
Butyl benzyl phthalate	20.0	U	63		970
Bis(2-ethylhexyl) phthalate	50.0	U	1,300		8,300
Di-n-octyl phthalate	20.0	U	6,200		6,200
PHENOLS (μg/kg dry weight)					
Phenol (SIM)	6.3		420		1,200
2-Methylphenol (SIM)	2.0	J	63		77
4-Methylphenol (SIM)	4.7	J	670		3,600
2,4-Dimethylphenol (SIM)	4.0	J	29		210
Pentachlorophenol (SIM)	5.4	J	400	504	690
MISCELLANEOUS EXTRACTABLES (μg/kg dry weight)					
Benzyl alcohol (SIM)	3.7	J	57		870
Benzoic acid (SIM)	22.8	J	650		760
Dibenzofuran	20.0	U	540		1,700
Hexachlorobutadiene (SIM)	1.4	J	11		270
N-Nitrosodiphenylamine (SIM)	1.6	J	28		130
PESTICIDES & PCBs (μg/kg dry weight)					
4,4'-DDD	1.00	U	16		
4,4'-DDE	1.00	U	9		
4,4'-DDT	1.00	U	12		
sum of 4,4'-DDD, 4,4'-DDE and 4,4'-DDT	1.00	U		50	69
Aldrin	0.50	U	9.5		
Total Chlordane (sum of cis-chlordane, trans-chlordane,	1.00	U	2.8	37	
cis-nonachlor, trans-nonachlor, oxychlordane)					
Dieldrin	1.00	U	1.9		1,700
Heptachlor	0.50	U	1.5		270
Total PCBs Aroclors (Sum of 1016, 1221, 1242, 1248,	4.0	U	130		3,100
1254, 1260, 1268)					
DIOXINS/FURANS					
Dioxin/furan TEQ - (U/EMPC = ½ EDL)	0.35		4	10	

Notes

- (1) 2-Methylnaphthalene is not included in LPAH sum
- J = Estimated concentration when the value is less than ARI's established reporting limits
- D = The reported value is from a dilution.
- U =Undetected at the limit of quantitation